ТЕОРІЯ ТА ПРАКТИКА НАВІГАЦІЙНИХ ПРИЛАДІВ І СИСТЕМ

УДК 621.375

ОБ АДЕКВАТНОСТИ МОДЕЛИ КОРИОЛИСОВА ВИБРАЦИОННОГО ГИРОСКОПА

Бакалор Т.О., Бондарь П.М., Национальный технический университет Украины "Киевский политехнический институт", г. Киев, Украина

В данной работе для оценки достоверности разработанной математической модели проведен сопоставительный анализ экспериментальных данных и результатов моделирования и расчета собственных частот колебаний элементов конструкции кориолисова вибрационного гироскопа

Введение

Объект исследований – кориолисов вибрационный гироскоп (КВГ), представляющий собой твердотельный осцилляторный датчик угловой скорости компенсационного типа, чувствительным элементом которого является резонатор цилиндрической формы. КВГ используется как первичный датчик в малогабаритных инерциальных навигационных системах, геодезии, инклинометрии.

При проектировании осцилляторных гироскопов большое внимание уделяется виброзащите конструкции, что в первую очередь, зависит от разнесения собственных частот элементов конструкции и частоты рабочей моды колебаний чувствительного элемента. Эту задачу целесообразно решать, используя численные методы исследований, поскольку использование аналитических методов позволяет с определенными допущениями исследовать только отдельные элементы конструкции, а не прибора в целом [1]. В настоящее время недостаточно исследованы вопросы численного моделирования методом конечных элементов (МКЭ) приборов данного класса в целом. Поэтому актуальным является исследование динамических свойств конструкции с учетом реальных геометрических особенностей КВГ при помощи МКЭ.

Рисунок 1 – Общий вид резонатора КВГ

Постановка задачи. На основе сопоставительного анализа подтвердить адекватность разработанной математической модели с результатами экспериментальных исследований.

Конструкция КВГ

Чувствительный элемент (ЧЭ) КВГ (рис. 1) выполнен в виде металлической оболочки цилиндрической формы. На дне цилиндра, жестко защемленного в центре, расположена пъезокерамическая система позиционного возбуждения и съема информации. Резонирующий ЧЭ совершает колебания на второй моде цилинд-

рической оболочки. ЧЭ посредством резьбового соединения присоединен к крепежной ножке, установленной на основании, на которое, в свою очередь, крепится колпак прибора для обеспечения заданных условий герметичности. Подвод питающего напряжения к системе возбуждения осуществляется через гермовводы, вмонтированные в основание прибора. Таким образом, КВГ конструктивно представляет собой многомассовую систему, имеющую ряд собственных частот.

Математическая модель

Общее число основных сборочных единиц, которые были учтены при моделировании, составило пять деталей. Для расчета собственных частот была создана объемная твердотельная модель каждой детали, а затем и всего прибора (рис. 2). Для создания математической модели и дальнейших численных исследований применялись пакеты программ, реализующие метод конечных элементов (МКЭ).

Рисунок 2 – Общий вид КВГ.

Рисунок 3 –

Конечноэлементная модель КВГ. Геометрические размеры модели были получены путем обмера реальных деталей прибора, используемого в дальнейшем при эксперименте.

Таблица 1. Собственные частоты элементов КВГ деталей прибора, используемого в дальнейшем при эксперименте.

№ моды	Частота, Гц			
П.П.	Резонатор	Колпак	Ножка	Основание
1	408.2492	1883.549	6200.415	5832.039
2	408.501	3903.739	9521.164	11333.57
3	780.6728	3904.242	9526.592	11349.62
4	1999.541	6390.451	32232.57	19925.12
5	2000.893	6406.566	32246.64	19940.3
6	2349.893	7356.309	32434.61	20745.58
7	5207.117	9327.961	32461.5	30043.78
8	5207.885	9330.536	32611.52	30051.15
9	5818.107	9754.092	40080.96	30599.8
10	5823.371	9766.324	40089.38	30608

Вісник НТУУ "КПІ". Серія ПРИЛАДОБУДУВАННЯ. – 2007. – Вип. 33

Конечноэлементная модель создавалась с максимальным приближением к реальной конструкции, учитывая такие особенности как фаски, округления и т.д. При моделировании использовались тетраэдальные 10-ти узловые конечные элементы (КЭ) с квадратичной аппроксимацией ребер. Общее число КЭ составило 64950, узлов – 127101. Конечноэлементная модель представлена на рис. 3.

В результате расчета получены значения собственных частот основных мод

Рисунок 4 – Результаты моделирования в виде контурных данных

колебаний элементов конструкции для низших форм колебаний резонатора (частоты приведены в таблице 1).

По контурным данным приведенным справа в виде цветной полосы на рис. 4, можно идентифицировать значение частоты, соответствующей той или иной форме колебаний. В качестве примера на рис. 4 показана вторая рабочая форма колебаний резонатора.

Эксперимент

Экспериментальные исследования проводились на экспериментальном образце прибора [2]. Схема

экспериментальной установки показана на рис. 5. Возбуждение колебаний осуществлялось следующим образом: с задающего генератора поступал периодический электрический сигнал на определенной частоте на пьезоэлементы системы возбуждения резонатора расположенные вдоль оси 1-1[°]. В результате обратного пьезоэффекта происходили изгибные колебания дна и, как следствие, колебания цилиндрической части резонатора на второй рабочей моде. Съем

Рисунок 5 – Схема экспериментальной установки

информации для повышения достоверности проводился при помощи пьезоэлементов, расположенных по осям пучностей 2-2' и узлов 3-3'. Электрические потенциалы, сформированные в результате прямого пьезоэффекта, поступали на осциллограф и фазометр, с осциллографа на вольтметры.

Для определения разности фаз на фазометр подавался опорный сигнал с задающего генератора. Для контроля уровня нагрева датчика, в целях чистоты эксперимента, использовался измеритель температуры (измеритель TO – измеритель температуры объекта исследования). Данные, снятые с вольтметров и фазометра в районе собственной частоты резонатора, представлены на рисунках 6 и 7 в виде АЧХ и ФЧХ соответственно. Как видно из рис. 6, АЧХ имеет два пика с преобладающей по амплитуде резонанса частотой $f_{\Pi 0}$, дополнительной - $f_{\Pi 1}$ для пучностей и f_{y0} , f_{y1} для узлов соответственно. Данное явление носит название разночастотности и обусловлено не идеальностью геометрических размеров и формы резонатора при изготовлении резонатора.

Диапазон изменения частоты сигнала задающего генератора колебался в пределах 100-12000 Гц, благодаря чему были получены отклики остальных элементов конструкции, что было вызвано неидеальностью сборки чувствительного элемента, а также в силу инерционных свойств его элементов. Принятая методика регистрации дает недостаточно точные результаты, поэтому для определения частот колебаний других элементов желательно использовать альтернативные методы съема, например акустические.

Выводы

Как следует из сравнения результатов натурного эксперимента (рис. 6, 7) и численного моделирования (данных таблицы 1 по второй моде) расхождение в частотах второй моды колебаний не превышает 3 %, что подтверждает адекватность разработанной модели.

Из таблицы 1 очевидно, что рабочая мода резонатора № 5, 6 и мембранные колебания колпака № 1 достаточно близки. Это обстоятельство требует дальнейшей математической оптимизации параметров конструкции с целью разнесения резонансных частот элементов конструкции КВГ.

Литература.

- 1. Лунин Б.С., Шаталов М.Ю. Исследование низкочастотного спектра полусферических резонаторов вибрационных гироскопов // Гироскопия и навигация. – 2000. – № 1 (28). – С. 235-243.
- 2. Чиковани В.В., Яценко Ю.А., Коваленко В.А. Результаты испытаний первой партии кориолисовых вибрационных гироскопов и анализ их характеристик // Гироскопия и навигация. – 2003. – № 2 (41). – С 32-38.

Бакалор Т.О., Бондар П.М. Про адекват-	Bakalor T.O., Bondar P.M. About adequacy of		
ність моделі коріолісова вибраційного гі-	model coriolis vibrating gyroscope.		
роскопа.	In the given job for an estimation of reliability		
В даній роботі для оцінки достовірності роз-	of the developed mathematical model the com-		
робленої математичної моделі проведено по-	parative analysis of experimental data and re-		
рівняльний аналіз експериментальних даних і	sults of modelling and calculation of own fre-		
результатів моделювання та розрахунку вла-	quencies of fluctuations of elements of a design		
сних частот коливань елементів конструкції	coriolis vibrating gyroscope is spent.		
коріолісова вібраційного гіроскопа.			

Надійшла до редакції 6 квітня 2006 року