Национальный технический университет Украины «Киевский политехнический институт»

Кафедра приборов и систем ориентации и навигации

Методические указания к лабораторным работам по дисциплине «Навигационные приборы и системы»

Лабораторная работа

# ФИЗИЧЕСКОЕ ГИРОКОМПАСИРОВАНИЕ ИНС ПОЛУАНАЛИТИЧЕСКОГО ТИПА

Составитель Мелешко В.В.

# ФИЗИЧЕСКОЕ ГИРОКОМПАСИРОВАНИЕ ИНС ПОЛУАНАЛИТИЧЕСКОГО ТИПА

1. Цель работы – изучение режима начальной выставки в азимуте, его свойств и характеристик.

#### 2. Основные теоретические сведения

Перед началом рабочего режима любая ИНС проходит начальную выставку. Для платформенной системы это горизонтирование платформы, а затем выставка относительно направления на Север, называемая гирокомпасированием.

При физическом гирокомпасировании гиростабилизированная платформа работает так же, как гирокомпас с косвенным управлением. При отклонении заданной оси платформы от направления горизонтальной составляющей вектора угловой скорости вращения Земли  $U_{\eta}$  платформа получает видимый уход, который воспринимает акселерометр. По сигналам акселерометра производится управление платформой в азимутальном и горизонтальном каналах.

Введем следующие системы координат (СК) (рис. 1.1):



 $\xi \eta \zeta$  – географическая сопровождающая система координат;  $x_g y_g z_g$  – повернутая на азимутальный угол А горизонтальная СК; xyz - связанная с платформой СК;

 $\xi_{\Pi}\eta_{\Pi}\zeta_{\Pi}$  – моделирующая систему  $\xi\eta\zeta$  приборная СК (связанная с платформой).

Отметим, что в условиях неподвижного относительно Земли основания система  $\xi \eta \zeta$  вращается с угловой скоростью вращения Земли U. Проекции U на  $\xi \eta \zeta$  будут:

$$U_{\eta} = U \cos \varphi,$$
$$U_{\zeta} = U \sin \varphi,$$

где  $\varphi$  – широта места.

Система  $x_g y_g z_g$  вращается относительно  $\xi \eta \zeta$  с угловой скоростью:

$$U_{\zeta} = -\dot{A}$$

Положение системы *хуz* относительно  $x_g y_g z_g$  зададим углами  $\delta, v, \mu$ . Угол  $\delta$  соответствует отклонению в азимуте,  $v, \mu$  – отклонения от плоскости горизонта.

Положение системы  $\xi_{\Pi}\eta_{\Pi}\zeta_{\Pi}$  относительно  $\xi\eta\zeta$  зададим углами  $\delta,\beta,\alpha$  где углы  $\beta$  и  $\alpha$  также определяют положение платформы относительно плоскости горизонта.

Направляющие косинусы систем координат при малых углах  $\delta, \alpha, \beta, \mu, \nu$  (менее 15°) приведены в таблицах 1.1, 1.2. Табл. 1.1. Табл. 1.2.

|                 | ųς | η         | ζ         |  |
|-----------------|----|-----------|-----------|--|
| $\xi_{\Pi}$     | 1  | $-\delta$ | $-\alpha$ |  |
| $\eta_{\varPi}$ | δ  | 1         | β         |  |
| ζπ              | α  | $-\beta$  | 1         |  |

|   | X <sub>g</sub> | $Y_g$     | $Z_g$  |  |  |  |
|---|----------------|-----------|--------|--|--|--|
| X | 1              | $-\delta$ | $-\mu$ |  |  |  |
| Y | δ              | 1         | ν      |  |  |  |
| Ζ | μ              | -v        | 1      |  |  |  |

Схема управления платформой в рассматриваемом режиме показана на рис.1.2.



Рис. 1.2. Структурная схема ИНС в режиме гирокомпасирования

Здесь

 $a_x$ ,  $a_y$  – кажущиеся ускорения, измеряемые акселерометрами, установленными по осям *xy* платформы;  $a_\eta$  (обозначается также  $a_N$ ) – северная составляющая кажущегося ускорения;

 $\omega_{kx}, \ \omega_{ky}, \ \omega_{kz}$  – формируемые системой управления угловые скорости коррекции платформы относительно осей *xyz*;

*c*<sub>1</sub>, *c*<sub>2</sub> – коэффициенты передачи горизонтального и азимутального каналов коррекции;

 $U_{x6}, \ U_{y6}, \ U_{z6}$  – вычисленные значения составляющих угловой скорости вращения системы  $x_g y_g z_g;$ 

 $\omega_{dx_{\theta}}, \ \omega_{dy_{\theta}}, \ \omega_{dz_{\theta}}$  – угловые скорости дрейфов гироскопов, определенные (вычисленные) при калибровке системы;

*A*, *φ*, *U* – вводимые значения азимутального угла, широты и угловой скорости вращения Земли.

На рис.1.3 приведены соответствующие оси СК, углы поворота, угловые скорости. Причем все они показаны в горизонтальной плоскости, что вполне допустимо с учетом малости углов  $\alpha, \beta, \mu, \nu$ .

В соответствии с рис.1.2 угловые скорости коррекции платформы запишем в виде:

$$\omega_{kx} = U_{x\theta} - \omega_{\partial x\theta} + c_1 a_y,$$
  

$$\omega_{ky} = U_{y\theta} - \omega_{\partial y\theta} - c_1 a_x,$$
  

$$\omega_{kz} = U_{z\theta} - \omega_{\partial z\theta} + c_2 a_n,$$
  
(1.6)

где  $a_n = a_v \cos A - a_x \sin A$ .

Составим уравнения движения платформы, приравнивая сумму относительной и переносной скорости движения абсолютной скорости.

В результате

$$\begin{split} \dot{\mu} &= \omega_{ky} + \omega_{\partial y} - U_y - v \cdot U_z - \delta \cdot U_x, \\ \dot{v} &= \omega_{kx} + \omega_{\partial x} - U_x + \mu \cdot U_z + \delta \cdot U_y, \\ \dot{\delta} &= -\omega_{kz} - \omega_{\partial z} + U_z - v \cdot U_y + \mu \cdot U_x, \end{split}$$
(1.5)

где  $\omega_{\partial x}, \ \omega_{\partial y}, \ \omega_{\partial z}$  – угловые скорости дрейфа платформы,  $U_x, \ U_y, \ U_z$  – составляющие угловой скорости вращения базиса  $x_g y_g z_g$ :

$$U_x = -U\cos\varphi\sin A,$$
  

$$U_y = U\cos\varphi\cos A,$$
  

$$U_z = U\sin\varphi.$$

Запишем выражения для кажущегося ускорения с учетом известного соотношения a = W - g, где W - абсолютное ускорение, g - гравитационное ускорение.



Рис. 1.3. Параметры углового положения платформы.

В условиях неподвижного относительно Земли основания акселерометры будут реагировать на вектор *g* ускорения силы тяжести:

$$a_x = -g \cdot \mu, \qquad a_y = g \cdot \nu \tag{1.7}$$

С учетом погрешностей измерения  $\varDelta a_x$  и  $\varDelta a_x$ 

$$a_x = -g \cdot \mu + \Delta a_x, \qquad a_y = g \cdot \nu + \Delta a_y \tag{1.8}$$

Подставим в (1.6) выражения (1.5). Тогда

$$\dot{\mu} = -c_1 a_x + U_{y_{\theta}} - \omega_{\partial y_{\theta}} + \omega_{\partial y} - U_y - v \cdot U_z - \delta \cdot U_x,$$
  

$$\dot{v} = c_1 a_y + U_{x_{\theta}} - \omega_{\partial y_{\theta}} + \omega_{\partial x} - U_x + \mu \cdot U_z + \delta \cdot U_y,$$
  

$$\dot{\delta} = -(c_2 a_\eta + U_{z_{\theta}} - \omega_{\partial z_{\theta}}) - \omega_{\partial z} + U_z - v \cdot U_y + \mu \cdot U_x,$$
  
(1.9)

Введем обозначения

$$\Delta U_x = U_{x6} - U_x, \qquad \Delta U_y = U_{y6} - U_y, \qquad \Delta U_z = U_{z6} - U_z$$

$$\Delta \omega_{\partial x} = \omega_{\partial x\theta} - \omega_{\partial x}, \qquad \Delta \omega_{\partial y} = \omega_{\partial y\theta} - \omega_{\partial y}, \qquad \Delta \omega_{\partial z} = \omega_{\partial z\theta} - \omega_{\partial z}$$

а также соотношения:

$$c_1 a_x = -c_1 g \cdot \mu = c_\Gamma \mu,$$
  
$$c_1 a_v = c_1 g \cdot v = -c_\Gamma \mu,$$

где  $c_{\Gamma} = -c_1 g$ ;

$$c_2 a_\eta = c_2 (g \cdot v \cos A + g \cdot \mu \sin A) = c_a (v \cos A + \mu \sin A),$$
 (1.10)

где  $c_a = c_2 g$ .

Из рис.1.3 можно увидеть, что вектор угловой скорости вращения относительно горизонтальной плоскости  $\vec{\Phi}$ , может быть разложен (приблизительно) на составляющие  $\dot{\alpha}, \dot{\beta}, \dot{\mu}, \dot{\nu}$ .

Соотношения составляющих определяется выражениями:

$$\dot{v}\cos A + \dot{\mu}\sin A = \beta, \quad v\cos A + \mu\sin A = \beta, -\dot{v}\sin A + \dot{\mu}\cos A = \dot{\alpha}, \quad -v\sin A + \mu\cos A = \alpha.$$
(1.11)

Тогда (1.10) можно записать  $c_2 a_\eta = c_a \beta$ .

После подстановок (1.9) преобразуем к виду

$$\begin{split} \dot{\mu} &= -c_{\Gamma}\mu + \Delta U_{y} - \Delta \omega_{\partial y} - v \cdot U_{z} - \delta \cdot U_{x}, \\ \dot{v} &= -c_{\Gamma}v + \Delta U_{x} - \Delta \omega_{\partial x} + \mu \cdot U_{z} + \delta \cdot U_{y}, \\ \dot{\delta} &= -c_{a}\beta - \Delta U_{z} + \Delta \omega_{\partial z} - v \cdot U_{y} + \mu \cdot U_{x}, \end{split}$$
(1.12)

где  $\beta = v \cos A + \mu \sin A$ .

Здесь  $\Delta U_i$ ,  $\Delta \omega_{\partial i}$  (i = x, y, z) нескомпенсированные составляющие переносной угловой скорости системы  $x_g y_g z_g$  и дрейфов платформы.

Наличие таких составляющих обусловлено неточностью вычисления  $U_{x_{ heta}}, U_{y_{ heta}}, U_{z_{ heta}}$ , в первую очередь, из-за погрешности ввода широты:

$$U_{xe} = -U\cos(\varphi + \Delta\varphi)\sin A,$$
  

$$U_{ye} = U\cos(\varphi + \Delta\varphi)\cos A,$$
  

$$U_{ze} = U\sin(\varphi + \Delta\varphi)$$
  
(1.13)

и неточностью калибровки дрейфов платформы.

Выражение (1.12) описывает движение платформы в азимуте, а также относительно плоскости горизонта по координатам  $\mu$  и  $\nu$ .

В литературе исследования проводятся часто для координат  $\beta$  и  $\alpha$ . Преобразуем уравнение (1.12) с целью перехода к переменным  $\alpha$  и  $\beta$  на основе соотношений (1.11).

В результате запишем:

$$\dot{\beta} = -c_{\Gamma}\beta + \Delta U_{\xi} - \Delta \omega_{\partial\xi} + \alpha \cdot U_{z} + \delta \cdot U_{\eta},$$
  

$$\dot{\alpha} = -c_{\Gamma}\alpha + \Delta U_{\eta} - \Delta \omega_{\partial\eta} - \beta U_{z} - \delta \cdot U_{\xi},$$
  

$$\dot{\delta} = -c_{a}\beta - \Delta U_{z} + \Delta \omega_{\partial z} - \beta \cdot U_{\eta} + \alpha \cdot U_{\xi},$$
  
(1.14)

где

$$\Delta U_{\xi} = \Delta U_x \cos A + \Delta U_y \sin A,$$
  
$$\Delta U_{\eta} = -\Delta U_x \sin A + \Delta U_y \cos A,$$

 $\Delta \omega_{\partial \xi} = \Delta \omega_{\partial x} \cos A + \Delta \omega_{\partial y} \sin A,$  $\Delta \omega_{\partial \eta} = -\Delta \omega_{\partial x} \sin A + \Delta \omega_{\partial y} \cos A,$ 

$$U_{\xi} = U_x \cos A + U_y \sin A,$$
  
$$U_{\eta} = -U_x \sin A + U_y \cos A.$$

Отметим, что при преобразовании использованы следующие из (1.11) соотношения:

$$v = \beta \cos A - \alpha \sin A,$$
  
$$\mu = \beta \sin A + \alpha \cos A.$$

Если учесть, что для неподвижного основания  $U_{\eta} = U \cos \varphi$ ,  $U_{\zeta} = U \sin \varphi$ , а  $U_{\xi} = 0$  и, соответственно,  $\Delta U_{\xi} = 0$  то получим окончательно:

$$\dot{\beta} = -c_{\Gamma}\beta - \Delta\omega_{\partial\xi} + \alpha \cdot U_{z} + \delta \cdot U_{\eta},$$
  
$$\dot{\alpha} = -c_{\Gamma}\alpha - \Delta\omega_{\partial\eta} - \beta U_{z} + \Delta U_{\eta},$$
  
$$\dot{\delta} = -c_{a}\beta + \Delta\omega_{\partial z} - \beta \cdot U_{\eta} - \Delta U_{z}.$$
  
(1.15)

Таким образом, исследование поведения платформы в режиме гирокомпасирования можно проводить по уравнениям (1.12) или (1.15)

Раскроем выражения  $\Delta U_{\eta}, \Delta U_{x}, \Delta U_{y}, \Delta U_{z}$ :

$$\begin{aligned} \Delta U_x &= U_{xe} - U_x = -U\cos(\varphi + \Delta\varphi)\sin A + U\sin A\cos\varphi \approx U\sin\varphi\sin A\Delta\varphi, \\ \Delta U_y &= U_{ye} - U_y = U\cos(\varphi + \Delta\varphi)\cos A - U\cos A\cos\varphi \approx -U\sin\varphi\cos A\Delta\varphi, \\ \Delta U_z &= U_{ze} - U_z = U\sin(\varphi + \Delta\varphi) - U\sin\varphi \approx U\cos\varphi\Delta\varphi, \\ \Delta U_\eta &= -U\sin\varphi\Delta\varphi. \end{aligned}$$
(1.16)

Если записать выражения (1.12) с учетом погрешностей акселерометров, то они получат вид:

$$\begin{split} \dot{\mu} &= -c_{\Gamma}(\mu + \varepsilon_{x}) + \Delta U_{y} - \Delta \omega_{\partial y} - v \cdot U_{z} - \delta \cdot U_{x}, \\ \dot{v} &= -c_{\Gamma}(v + \varepsilon_{y}) + \Delta U_{x} - \Delta \omega_{\partial x} + \mu \cdot U_{z} + \delta \cdot U_{y}, \\ \dot{\delta} &= -c_{a} \Big[ (\mu + \varepsilon_{x}) \cos A + (v + \varepsilon_{y}) \sin A \Big] - \Delta U_{z} + \Delta \omega_{\partial z} - v \cdot U_{y} + \mu \cdot U_{x}, \end{split}$$
(1.17)

где

$$\varepsilon_x = \frac{\Delta a_x}{g}, \ \varepsilon_y = \frac{\Delta a_y}{g}$$

Аналогично

$$\dot{\beta} = -\mathbf{c}_{\Gamma}(\beta + \varepsilon_{\beta}) - \Delta\omega_{\mathrm{g}\xi} + \alpha \cdot U_{z} + \delta \cdot U_{\eta},$$
  

$$\dot{\alpha} = -\mathbf{c}_{\Gamma}(\alpha + \varepsilon_{\alpha}) - \Delta\omega_{\mathrm{g}\eta} - \beta U_{z} + \Delta U_{\eta},$$
  

$$\dot{\delta} = -\mathbf{c}_{a}(\beta + \varepsilon_{\beta}) + \Delta\omega_{\mathrm{g}z} - \beta \cdot U_{\eta} - \Delta U_{z},$$
  
(1.18)

где

$$\varepsilon_{\beta} = \varepsilon_x \sin A + \varepsilon_y \cos A;$$
  
$$\varepsilon_{\alpha} = \varepsilon_x \cos A - \varepsilon_y \sin A$$

Решения систем (1.17), (1.18) могут быть получены в аналитическом виде, например, в операторной форме методом Крамера. Однако решения получаются громоздкими и трудно обозримыми. Их целесообразно моделировать на ЭВМ.

Системы (1.17), (1.18), равно как и (1.12), (1.14) можно упростить, если учесть, что режиму гирокомпасирования предшествует горизонтирование платформы и в процессе гирокомпасирования после этого отклонения от плоскости горизонта ( $\mu$ ,  $\nu$  или  $\alpha$ ,  $\beta$ ) не превышают единиц угловых минут. Удельные скорости коррекции  $c_{\Gamma}$ ,  $c_a$  больше переносных угловых скоростей.

Пренебрегая в первом и втором уравнениях членами перекрестных связей, будем рассматривать их как независимые. Например, в (1.18) пренебрежем членами перекрестной связи  $\beta U_z$ ,  $\alpha U_z$ ,  $\beta U_\eta$ . Тогда можно исследовать движение платформы по системе:

$$\dot{\beta} = -c_{\Gamma}(\beta + \varepsilon_{\beta}) - \Delta \omega_{\delta\xi} + \delta \cdot U_{\eta},$$
  
$$\dot{\delta} = -c_{a}(\beta + \varepsilon_{\beta}) + \Delta \omega_{\delta z} - \Delta U_{z},$$
  
(1.19)

На рис.1.4 приведены графики изменения углового положения платформы для одного примера параметров режима гирокомпасирования.

Решим систему (1.19) методом подстановки. Выразим  $\beta$  из второго уравнения:

$$\beta = -(\delta - \Delta \omega_{\partial z} + \Delta U_z)/c_a - \varepsilon_{\beta}.$$
  
Подставим в первое уравнение  $\dot{\beta} = -\frac{1}{c_a}\ddot{\delta}$ ,  
 $\ddot{\delta} + c_{\Gamma}\dot{\delta} + c_a U_{\eta}\delta = c_{\Gamma}\Delta\omega_{\partial z} - c_{\Gamma}\Delta U_z + c_a\Delta\omega_{\partial \xi}$  (1.20)



Рис.1.4. Параметры гирокомпасирования

С учетом того, что  $\Delta U_z = U \cos \varphi \cdot \Delta \varphi$ , частное решение:

$$\delta_{y} = \frac{c_{\Gamma}}{c_{a}U\cos\varphi} \Delta\omega_{\partial z} - \frac{c_{\Gamma}}{c_{a}}\Delta\varphi + \frac{1}{U\cos\varphi} \Delta\omega_{\partial\xi}$$
(1.21)

Общее решение уравнения (1.20) может быть записано в виде:

$$\delta = e^{-ht} \left[ \left( \delta_0 - \delta_y \right) \cos \omega t + \frac{\dot{\delta}_0 + h \left( \delta_0 - \delta_y \right)}{\omega} \sin \omega t \right] + \delta_y, \qquad (1.22)$$
$$h = \frac{c_{\Gamma}}{2}, \ \omega = \sqrt{\omega_0^2 - h^2} \ , \ \omega_0^2 = c_a U_{\eta},$$

где

при условии, что  $\omega_0 > h$ .

 $\delta_0$  и  $\dot{\delta}_0$  - начальные значения при t = 0.

Если  $h > \omega_0$ , мы получим апериодический характер движения. В этом случае корни характеристического уравнения для (1.20) будут

$$p_{1,2} = -h \pm \sqrt{h^2 - \omega_0^2}$$

Общее решение уравнения запишем в виде

$$\delta = C_1 e^{p_1 t} + C_2 e^{p_2 t} + \delta_v \tag{1.24}$$

где  $C_1, C_2$  - постоянные интегрирования:

$$C_{1} = \delta_{0} - \delta_{2} - \frac{\dot{\delta}_{0} - (\delta_{0} - \delta_{y})p_{1}}{p_{2} - p_{1}}; \qquad C_{2} = \frac{\dot{\delta}_{0} - (\delta_{0} - \delta_{y})p_{1}}{p_{2} - p_{1}}$$

При  $h = \omega_0$  корни уравнения  $p_{1,2} = -h$  а решение будет:

$$\delta = (C_1 + C_2 t)e^{pt} + \delta_y ,$$

где  $C_1 = \delta_0 - \delta_v$ ,

$$C_2 = \dot{\delta}_0 + (\dot{\delta}_0 - \delta_y)h.$$

Продолжая метод подстановки, получим:

$$\ddot{\beta} + c_{\Gamma}\dot{\beta} + c_{a}U_{\eta}\beta = -c_{a}U_{\eta}\varepsilon_{\beta} + \Delta\omega_{\partial z}U_{\eta} - \Delta U_{z}U_{\eta},$$
  
$$\beta_{y} = -\varepsilon_{\beta} + \frac{1}{c_{a}}(\Delta\omega_{\partial z} - U\cos\varphi \cdot \Delta\varphi)$$
(1.25)

Вид общих решений нетрудно получить самостоятельно.

Как показывает анализ решений, точность гирокомпасирования  $(\delta_y)$  определяется величиной остаточных угловых скоростей дрейфов платформы  $\Delta \omega_{\partial z}, \Delta \omega_{\partial x}, \Delta \omega_{\partial y}$ , крутизной характеристик коррекции  $c_{\Gamma}$  и  $c_a$ , их соотношением, величиной широты  $\varphi$ , погрешностью ввода широты  $\Delta \varphi$  и не зависит от погрешностей акселерометров:

$$\Delta a_x, \Delta a_y, \varepsilon_\beta = \frac{1}{g} (\Delta a_x \sin A + \Delta a_y \cos A).$$

Погрешности акселерометров влияют, как видно из (1.25), на погрешность горизонтирования, которая также зависит от погрешности ввода широты  $\Delta \varphi$ , самой широты  $\varphi$  и величины остаточного (нескомпенсированного) ухода платформы  $\Delta \omega_{dz}$ .

Время гирокомпасирования может быть определено для колебательного процесса (1.22) по формуле  $t_{\Pi} = \frac{5}{h}$ , для апериодического процесса (1.24) - по формуле  $t_{\Pi} = \frac{5}{-h + \sqrt{h^2 - \omega_0^2}}$ .

Иногда характеристики системы коррекции определяют через постоянную времени T и относительный коэффициент затухания (демпфирования)  $\zeta$ .

Для системы (1.19) можно записать характеристическое уравнение

$$p^2 + c_{\Gamma} p + U_{\eta} c_a = 0$$

Если записать его в другой форме, получим

 $T^2 = \frac{1}{U_n c_a}, \ 2T\zeta = \frac{c_\Gamma}{U_\eta c_a}.$ 

$$f^2 p^2 + 2T\zeta p + 1 = 0,$$

где

Отсюда 
$$\zeta = \frac{c_{\Gamma}}{2\sqrt{U_{\eta}c_{a}}}$$
. Часто принимают  $T = 30c, \ \zeta = 0.8$ .

Крутизну систем азимутальной  $c_a$  и горизонтальной  $c_{\Gamma}$  коррекции можно определять из соотношений:

$$c_a = \frac{1}{T^2 U_{\eta}}, \qquad c_{\Gamma} = 2T\xi U_{\eta}c_a.$$

Например, если T = 30c, то  $c_a = 22\frac{1}{c}$ ,  $c_{\Gamma} = 0.08\frac{1}{c}$ ,

## 3. Задания к работе

1. Исследовать режим гирокомпасирования (определить точность и время) по решениям системы (1.15) при варьировании параметров:

$$\varphi; \Delta \omega_{\partial x}, \Delta \omega_{\partial v}, \Delta \omega_{\partial z}; c_a, c_{\Gamma}; \Delta \varphi, \Delta a_x, \Delta a_v, A.$$

Учесть при этом ограничения:

$$\delta < 0.4$$
,  $\beta < 0.01$ ,  $\dot{\delta}_{\text{max}} = 0.2 \frac{1}{2}$ .

- 2. Сопоставить результаты с результатами моделирования по (1.19).
- Исследовать для рассмотренных случаев движение платформы по координатам μ, ν (по системе (1.12)).
- 4. Промоделируйте режим гирокомпасирования с параметрами системы МИС-2.
- 5. Постройте фазовую траекторию движения платформы на картинной плоскости (параметров δ и β.

## 4. Контрольные вопросы

- 1. Что общего в работе гирокомпаса и инерциальной платформы в режиме физического гирокомпасирования?
- 2. Чем отличаются гирокомпас с косвенным управлением и инерциальная платформа в режиме гирокомпасирования?
- 3. Как участвуют двигатели стабилизации платформы в режиме гирокомпасирования?
- 4. В какие азимутальные положения может устанавливаться платформа?
- 5. Что будет, если использовать один из двух акселерометров платформы?
- 6. Чем отличается схема гирокомпасирования в лабораторной работе от схемы, рассмотренной на лекциях?
- 7. От чего зависит точность гирокомпасирования?
- 8. От чего зависит время гирокомпасирования?
- 9. При каких ограничениях справедливы используемые уравнения движения?
- 10. Проведите сравнение результатов моделирования с аналитическими оценками
- 11. Зачем в уравнениях используются две пары углов, описывающих отклонения платформы от плоскости горизонта?
- 12. Откуда берут составляющие дрейфа гироскопов, которые вводят в схему управления?
- 13. Как влияет точность акселерометра на погрешность и время гирокомпасирования?
- 14. В каком диапазоне меняется скорость азимутальной коррекции (рад./сек)?

#### 5. Содержание отчета

Отчет по лабораторной работе должен содержать результаты выполнения моделирования в соответствии с заданием. Необходимо привести основные графики, характеризующие работу исследуемой системы, сделать краткое описание полученных результатов. Сделать выводы по работе.

# 6. Литература

- 1. Мелешко В. В. Инерциальные навигационные системы. Начальная выставка. К.: Корнейчук, 1999. 126 с.
- 2. Одинцов А. А. Теория и расчет гироскопических приборов. К.: Вища школа, 1985. 392 с.