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ABSTRACT 
 

The influence of random errors in measurement of eye transverse aberrations on the accuracy of reconstructing wave 

aberration as well as ametropia (mean power) and astigmatism parameters is investigated. The dependence of mentioned 

errors on a ratio between the number of measurement points and the number of polynomial coefficients is found for 
different pupil location of measurement points. Recommendations are proposed for setting these ratios. 
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1. INTRODUCTION 
 
Currently refractive surgery with custom cornea ablation is being rapidly extended. This technology provides an accurate 

and selectable cornea ablation and ensures the correction of not only ametropia (mean power) and astigmatism, but higher-

order aberrations as well 1,2.  

 
To achieve successful outcome of refractive corneal surgery, detailed preliminary examination of refractive performance of 

the eye’s optical system is to be accomplished. Therefore, a new generation of refractometers, enabling to measure 

refraction or aberration characteristics of the eye at separate pupil points, is being developed 36. One of spatially resolved 

refraction measurement techniques is based on measurement of a position of a thin laser beam at the retina plane 7. This 
beam intersects the pupil in so called measurement points, i.e. pupil zones with areas, which are considerably smaller than 

area of the whole pupil.  Once the eye’s transverse aberrations have been measured, one can determine Zernike polynomials 

by using the least-squares technique. Zernike polynomials describe the wave-front deformation function (wave aberration) 

of the eye, which enables to evaluate to-be-ablated cornea shape and estimate important ophthalmic parameters of ametropia 
(mean power), astigmatism, and sight acuity.  

 

Since the measurement of transverse aberration of the thin beam at the retina plane is inevitably accompanied by errors, and 

a total number of such measurement points is limited, there is a question about the accuracy of wave aberration and 
ophthalmic parameters estimation. For this reason, a purpose of this paper is to investigate quantitatively the influence of 

transverse aberration measurement errors and the number of Zernike modes on errors of reconstructing mentioned 

parameters.  

 

2. METHOD 
 

Zernike polynomials are widely used in optics to present the wave aberration function at pupil and object space coordinates 
8. If wave aberration and ophthalmic parameters of the eye are defined for one retinal point (at a fovea zone) and the eye’s 

optical system has no axial symmetry relative to the visual axis, the expression for the wave aberration function may be 

written as follows 9, 10: 
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where jj ,   are polar coordinates of the j-th measurement point ( q...j 1 ), q is a total number of measurement points, 

m,nm,n S,C  are Zernike polynomial coefficients,  jm,nR   are Zernike radial polynomial terms, calculated for the j-th 

measurement point according to formula9, 10: 
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where m  and n  are integers characterizing a type and an order of the wave aberration term, respectively, mn  , mn  is 

even. 

 
Total number t of terms in expression (1) (i.e. the number of Zernike coefficients) is determined by maximum values of the 

n and m indexes:  
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where z0 is a number of coefficients, having no influence on the wave aberration value; z0=(n+4)/2, if nmax is even; 

z0=(n+3)/2, if nmax is odd; z=4, if mmax and nmax are even; z=3, if mmax and nmax are odd or mmax is odd and nmax is even; z=2, if 

mmax is even and nmax is odd. 

 
The set of equations (1) for all (q) measurement points may be written in a matrix form as: 

 

CLW  . (4) 

 

where W is a vector, comprising q elements Wj, L is a rectangular matrix with dimensions qt, whose elements are values of 

Zernike polynomial terms, computed for all measurement points, C  is a vector, consisting of t Zernike coefficients m,nC  

and m,nS . 

 

The objective of polynomial approximation of the wave aberration function is to determine the vector C  elements. This 

may be accomplished with the least-squares technique according to known formula: 
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where EAAEAB
TT -1)( , A is a matrix with dimensions 2qt, comprising coefficients xca , xsa , yca , and ysa  from 

the following set of equations: 
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where ),( jjx   and ),( jjy   are orthogonal projections of retinal transverse aberration for j-th measurement point 

on axes X and Y, respectively; X is a vector, comprising elements ),( jjx   and ),( jjy  ;  E is a diagonal matrix of 

weighting coefficients, f  is the back focal length of the eye’s optical system, n is a refractive index of the vitreous humor. 

For the “standard” eye: 8922.f   mm, 3371.n  . 

 

According to expression (5), equation (4) may be rewritten as: 
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It may be shown, that values of ametropia DA  (as aberration of general defocusing) and primary astigmatism ms AA   in 

diopters, and angle 
xma  between a horizontal plane, passing through the visual axis, and a plane, in which a retinal spot 

size is the biggest due to astigmatism, can be found by means of correspondent Zernike coefficients as follows: 
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where D is the entrance pupil diameter in mm, 02 ,C , 22 ,C , and 22 ,S  are coefficients, computed in m for normalized 

radial coordinates j  of measurement points at the pupil plane. Here z must have the value, for which  
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Thus, to reconstruct the jW  values and compute the DA , ms AA  , and xma  parameters, the following steps are to be 

done: 
1) set a grid of measurement points at the pupil plane; 

2) provide the measurement of the ),( jjx   and ),( jjy   transverse aberrations at all pupil points and combine the 

X vector; 



3) set number t of necessary Zernike coefficients m,nC  and m,nS ; 

4) compute Zernike coefficients according to equation (5); 
5) estimate the values of function W  as well as ametropia and astigmatism parameters using equations (4), (7)...(9). 

 

Equations (5)...(9) indicate that accidental errors of estimating jW , DA , ms AA  , and 
xma  depend on accidental 

measurement errors (i.e. errors of the vector X elements) as well as on structure and dimensions of the A and Н matrices, 

given by the q and t numbers. To obtain these dependences, expressions for computing dispersions are to be found. 
According to the theory of functions with accidental arguments, dispersion of values of such a function equals to a sum of 

products of squares of its partial derivatives with respect to arguments and dispersions of arguments. It should be noted that 

this thesis is valid for uncorrelated arguments only.  

 

According to equations (5) and (6), the C  and W matrices are linear relatively to accidental arguments of the X vector. 

Therefore 
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where 2

kX
  is dispersion of the k-th element of the X vector. 

 

Dispersions of DA , ms AA  , and 
xma  estimation errors may be found similarly: 
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where 
02 ,C

 , 
22 ,C

 , and 
22 ,S

  are standard deviations of estimation errors of Zernike coefficients 02 ,C , 22 ,C , and 22 ,S , 

respectively. Equations  (1)...(6) and (10)...(14) form the basis, on which further investigations are carried out. 

 
 

3. RESULTS 
 

To provide numerical research of wave aberration and ophthalmic parameters estimation errors according to equations 
(10)...(14) and (1)...(6), a special computer program has been developed. It enabled to set an arbitrary location of 

measurement points at the pupil plane and a desirable number of Zernike modes. 

 

Nine different grids of three types have been chosen for the analysis (fig. 1). The first type (grid #1, 4, and 7) has a radial 
distribution of measurement points. The grids of the second type (grids #2, 5, and 8) are generated to have approximately 

the same distances between neighboring measurement points. Finally, the grids of the third type (grids #3, 6, and 9) have an 

equal step along the axes of the orthogonal coordinate system. The choice of such distributions takes into account 

peculiarities of optical deflectors action as well as a construction of micro-lens arrays in Hartmann-Shack sensors. 



   
#1 (64 points) #2 (66 points) #3 (80 points) 

   

   
#4 (156 points) #5 (156 points) #6 (156 points) 

   

   
#7 (380 points) #8 (385 points) #9 (384 points) 

 

Fig. 1 Location of measurement points at the entrance pupil plane 
 

 

When using equations (5)...(14), the experimentally proved fact of independence of 2

kX
  on index k was taken into account. 

It was established that values 2

kX
  are defined by electric noise of the photo-detective device, which practically does not 

depend on pupil coordinates of the measurement point. For this reason, the 22
XX k

  parameter as a constant was put out 

of the sum, and dispersion values of jW , DA , ms AA  , and xma  were normalized on it.  

 

The results have confirmed that dispersions of jW  are constant for measurement points, located at the same distance from 

the pupil center. Therefore, relative standard deviations of jW  (indicated as 
X

W



) as functions of factor

t

q
Kqt

2
  are 



shown in fig. 2 for three different radii R. Radius R = 3 mm corresponds to the edge of the pupil zone. All figures are 

obtained with the help of computation subroutines having double precision. 
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Fig. 2 Charts of wave aberration estimation errors 
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Continuation of fig. 2  
 

According to equation (5), relative standard deviations 
X
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 depend preliminary on number q of 

measurement points  (fig. 3). 
 

The analysis of obtained results enabled to establish: 

1) In general, relative error 
X

W



 essentially depends on a number and a pupil distribution of measurement points. 

However, if factor qtK  equals to 5...10, then mentioned error weakly correlates with points location and belongs to 

interval 0.04...0.01; 

2) Independently on points location, relative error 
X

W



quickly increases, if factor qtK  tends to unity; 

3) Pupil points distribution does not influence on value 
X
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 for q = 64...80 when 3qtK , for q = 156 when 

4qtK , and for q = 380...385 when 5qtK ; 

4) Relative errors 
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 practically do not depend on pupil points location and are defined by the 

total number of measurement points.  

5) Relative error 
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 has the same behavior as errors 
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, but, in addition, it decreases, 

when the astigmatism value increases. 
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Fig. 3 Charts of ametropia and primary astigmatism estimation errors: 

 1  












m

diopters

X

A , 2  










 

m

diopters

X

AA MS
 

 

 

4. CONCLUSIONS 
 

Presented materials and results of carried out investigations enable to estimate the potential accuracy of reconstructing 

wave aberration and ophthalmic parameters, if functional parameters of a spatially resolved refractometer are known. On 

the other hand, they enable to determine principle features of wave-front reconstruction, if required accuracy of wave 
aberration or ophthalmic parameters estimation is given. 

 

To obtain a practical independence of wave aberration estimation errors on pupil location of measurement points, the total 

number of measurement points should at least 2.5 times be greater than the number of polynomial terms (number of 
Zernike coefficients). 
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