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ABSTRACT 

The influence eye micromotions on the accuracy of estimation of Zernike coefficients from eye transverse aberration 

measurements was investigated. By computer modeling, the following frequently found eye aberrations have been 

examined: defocusing, primary astigmatism, spherical aberration of the 3rd and the 5th orders, as well as their 

combinations. It was determined that the standard deviation of estimated Zernike coefficients is proportional to the standard 
deviation of angular eye movements. Eye micromotions cause the estimation errors of Zernike coefficients of present 

aberrations and produce the appearance of Zernike coefficients of aberrations, absent in the eye. When solely defocusing is 

present, the biggest errors, cased be eye micromotions, are obtained for aberrations like coma and astigmatism. In 

comparison with other aberrations, spherical aberration of the 3rd and the 5th orders evokes the greatest increase of the 
standard deviation of other Zernike coefficients. 

Key words: eye micromotions, wave-front deformation, eye transverse aberrations, Zernike polynomials, astigmatism, 

spherical aberration, spatially resolved refractometer 

1. INTRODUCTION 

Laser surgical sight correction techniques as photorefractive keratectomy and laser keratomiles are widely applied in recent 

years1-3. They enable to correct ametropia and/or astigmatism and to improve sight acuity by changing a shape of the 

anterior cornea surface. 

To perform the cornea surgery, the information is required about the eye’s sight characteristics. A function of wave 
aberration is the most important one, because it enables to determine the shape of to-be-deleted cornea layer and to evaluate 

ametropia and astigmatism parameters, as well as sight acuity. 

It is possible to estimate the function of wave aberration with the help of spatially resolved refractometers. These devices 

are intended to measure eye refraction at small pupil zones (measurement points). Such zones are not overlapped (in other 
words, they are spatially separated).  

Achievements of new laser surgical techniques enabled to perform the more precise surgical correction of the cornea shape 

in a custom, flexible manner. Therefore, the necessity in accurate measurement of a spatial refraction distribution in 

preoperative and postoperative period has appeared.  

Obviously, the measurement of a spatial refraction distribution of an eye, which continuously changes its orientation, is 

accompanied by errors. Indeed, such random micromotions of the eye as tremor, jumps, and drift4 are the factors, limiting 

the measurement accuracy. For this reason, a purpose of the present paper is to determine the influence of eye micromotions 

on sight characteristics estimation errors and to work out practical recommendations for increasing the accuracy of spatially  
resolved refractometry. 

2. THEORY  

To evaluate sight parameters, the wave aberration function with respect to the visual axis is to be estimated. For this 
purpose, let us consider a thin light beam, exiting from an axial object point and being set sequentially at all measurement 

points with pupil coordinates j, j  (fig. 1).   

In a general case, the light spot intersects the retina plane at a point with coordinates j , j  (point A in fig. 1). These 

coordinates are transverse aberrations of the beam for the j-th measurement point. If the eye were an ideal optical system 

(i. e., without aberrations), the light spot would be placed on the visual axis and j , j would be equal to zero for all 

measurement points (for all indexes j). The beam trajectory for this case is shown in fig. 1 by a dashed line. 
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Fig. 1 Functional diagram of a single-beam spatially resolved refractometry: 1  light beam; 2  visual axis; 3  

beamsplitter; 4  retina; 5  pupil; 6  lens; 7  photodetector; 8  measurement point at the pupil plane 

 

Since the eye possesses aberrations, the point A shifts at the retina plane. This displacement depends on coordinates j , 

j . Values  jjj ,  and  jj , j  can be determined by photo-electric two-coordinate meter 3, 6, 7 

(fig. 1), measuring a position of the light spot image (point A) on the photodetector’s light-sensitive surface. Thus, a set of 

j  and j  is obtained, enabling to estimate the eye’s wave aberration function and other parameters of sight 

imperfections. For this purpose, the following technique may be used: 

1. The wave aberration function  jj ,W   is assumed to be expanded in terms of Zernike polynomials5: 

    
n m

jmnjmnj
m
njj msinSmcosCR),(W ,  (1) 

where R is a radius of a reference sphere, having a center at the origin of retinal coordinate system (the axes j  and 

j ) (fig. 2);  j is an index of a pupil measurement point; n  = 1.337  is a refraction index of the vitreous humor; m
nR  are 

radial Zernike polynomials5; nmnm S,C  are coefficients of Zernike polynomials. 
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Fig. 2 Wave-front deformation of the eye’s optical system:  

1  reference sphere with a center at the retina plane, 2  wave front, deformed by aberrations 
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In this set, the nmC  and nmS  coefficients are unknown. The j  and j  aberrations are measured by a spatially 

resolved refractometer.  

3. The nmC  and nmS  coefficients may be found by the least squares method, according to known formula: 

XBXAAAC
TT  -1)( ,  (3) 

where C is a vector of unknown coefficients nmC  and nmS ; A is a matrix with dimensions tq2 , whose elements are 

numerical factors at nmC  and nmS  in the set (2), t is a total number of the vector C elements; X is a vector, comprising 

right parts of the equation set (2).  

4. According to expression (1), the  jjW  ,  function is obtained. Then parameters of ametropia (mean power) and 

astigmatism may be calculated as follows 6: 
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where DA  and 





ms AA  are the ametropia and primary astigmatism values in diopters, respectively; D is a diameter of 

the entrance pupil in mm, 2220 C,C , and 22S  are Zernike coefficients in m. 

From the equations (2) and (3), one can find that the measurement errors (i. e., errors of the vector X elements) lead to 

errors of nmnm SC ,  estimation. These errors define the accuracy of the  jjW  ,  function estimation as well as the DA  

and 





ms AA  parameters evaluation. 

To investigate the influence of eye micromotions on the accuracy of transversal aberration measurement, let us consider fig. 

3, in which an ametropic eye is shown. The thin light beam (the beam 1) enters the eye in parallel to the visual axis. If the 

visual axis of the eye and the optical axis of the refractometer coincide, then due to ametropia  0  the beam will hit the 

retina at point A  (fig. 3). Its image A   on the photodetector’s light-sensitive surface will be located at distance 

0





ll fAF  from the optical axis. Here 

lf is the focal length of lens 3. If we divide the indicated distance into linear 

magnification 
f

fl


 , we shall get a value of segment jAF 

0 , where f  is the front focal length of the eye. 

Similarly, one can determine the j  value. Exit angle 0  of the light beam can be found from equation 
RS

j


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0 , 

because the reflected ray passes through the eye’s nodal points NN , . Taking in account that 








a

j

fh
, one can get 

the expression for 0:  
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Fig. 3. Position of a light spot image at planes of the retina and the photodetector’s light-sensitive surface in the ametropic 

eye: 1  light beam; 2  visual axis; H, H  principal points; N, N  nodal points; fa', f  back focal length of the ametropic 

and  emmetropic eye, respectively; C  eye rotation center; F, F0  focal points of the ametropic and emmetropic eyes, 

respectively 

 

Let the eye turned (due to micromotions) around its geometric center C by some small angle  and the center of turn 

remained on the optical axis of a refractometer (fig. 4). 

To determine an intersection point of the ray 1 with the retina plane, an auxiliary ray is to be used. Such a ray (the ray 3) 

enters the eye in parallel to the ray 1, passes through the nodal points N,N  , and intersects the back focal plane of the 

ametropic eye at the point O. The ray 1 passes through this point too, but it intersects the retina at the point A (fig. 4). The 

retinal surface is shown in fig. 4 as a plane, perpendicular to the visual axis, because the actual angle  is very small. The 

ray, reflected from the retina, passes through the nodal points N,N   and defines a position of the point A  (fig. 4).  

It is obvious from fig. 4 that for small values of angle  one can determine the   value from equation 
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Fig. 4 Position of light spot image at the planes of the retina and the photodetector’s light-sensitive surface in the rotated 

ametropic eye: 1  light beam; 2  visual axes; 3  auxiliary ray; 4  photodetector’s light-sensitive surface 

 

The  0  value, multiplied by segment  RS  , gives the aberration measurement error   of the ray 1 at the retina 

in the meridional plane. The   error is determined by a similar way. 

Taking into account the equations (7) and (6), one can get that 

    



 

af

S
RS0

.
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The analysis of the formula (8) enabled to draw the following conclusions: 

1. The   error is a consequence of non-coincidence of the eye nodal points NN ,  with the eye rotation center C 

 0S  and presence of ray aberration  0 .  

2. The   error is absent if the eye has no aberrations for the ray 1  0 .  

3.  If const  for all measurement points, then the   error does not depend on height h of the ray,. 

4.  If the   magnitude depends on coordinates j and j, i.e.,  jj  , , then the   error is proportional to the 

 distance. In this case, Y is not a constant and depends on j even if const .  

5. According to fig. 3, 








af

h
AFY 0 . Therefore, by using the equation (8), one can estimate the relative error 

%100

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%100
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S
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
 .  (9) 

It is evident from (9) that this error does not depend of ray aberration value.  



The formulas (8) and (9) enable to evaluate quantitatively the errors in a general case. Particularly, for the standard eye 

(with f  22.89 mm, S 5.12 mm) at h = -1 mm,  02 5.810-3 radians, 1  1.12 mm (equivalent to ametropia of 

3 D), and 2 = 2.13 mm (equivalent to ametropia of 6D), the   error, caused by angular eye turn by angle , has values: 

 1 1.5 m,  2 3.05 m, %100


 =3%. Then absolute errors of ametropia evaluation equal to 0.09 D 

and 0.18 D, respectively. Obviously, such errors are essentially non-zero.  

The carried out calculations enabled to draw one more important conclusion. The jumps of the eye’s axis and drift, which 

take units up to tens of angular minutes, may influence essentially on the accuracy of j , j  evaluation. Tremor, 

having an angular range of about units up to tens of angular seconds, should not be considered as a factor affecting 

substantially on the indicated accuracy. 

On the other hand, the effect of eye micromotions can be considered as indeterminacy of coordinates of the ray 1 over the 

pupil. When  jj  , , the aberrations of the ray 1 at a measurement point with actual coordinates 

   jjjjjjjj  ,,,  are referred to a measurement point with coordinates jj  , . This causes the 

following errors: 

   
   ,,,

,,,

jjjjjjj

jjjjjjj




 (10) 

which induce the errors of nmnm SC ,  estimation because of distortion of the X elements.  

To provide investigation of the influence of eye micromotions on the accuracy of estimation of indicated parameters, we 

have chosen a method of computer modeling random angular position of the eye’s visual axis relative to the measurement 

beam (fig. 4). The method is based on using artificial distortion of the j, j coordinates of measurement points by adding 

random numbers jj ,  . These numbers are obtained by using either a random number generator for a specified errors 

distribution law or an array of numbers, obtained from actual eye micromotion measurements and stored in computer 
memory. An important advantage of such a numerical method is the possibility of getting the results for different 

micromotions including natural micromotion realizations. 

The method include the following sequence of steps: 

1. The  jj ,W   function is specified a priori. The left part of equation (2) and the A matrix are formed. 

2. The j , j  values are computed at distorted pupil coordinates jjjj  , . 

3. The X and Y components, caused by eye rotation, are added to aberration values, indicated in step #2. The vector 
X is formed. 

4. The C vector is calculated by formula (3). 

5. Steps #2...#5 are repeated many times. 

 

3. RESULTS AND DISCUSSION 

Numerical investigation of the influence of eye micromotions on the accuracy of nmnm SC ,  estimation was carried out 

under such conditions: 

1. The investigated eye is assumed to be standard with the back focal length 22.89 mm, pupil diameter 6 mm, having the 

following values of longitudinal aberration (in diopters): 

 Solely ametropia as aberration of defocusing: +3 and +6; 

 Solely primary astigmatism: +3 and +6; 

 Combination of ametropia and astigmatism: (+3, +3),  (+3, +6), (+6, +3), and (+6, +6); 



 Solely spherical aberration of the 3rd order at the pupil edge: +3 and +6; 

 Solely spherical aberration of the 5th order at the pupil edge: +3 and +6. 

2. The standard deviation of angular tilt of the visual axis (under normal error distribution) was equal to 2, 6, 10, 14, and 18 

angular minutes. 

3. The total number q of measurement points at the pupil plane was set to 33, 56, 66, and 110. 

4. The number q of measurement points must be sufficient to exclude the influence of the 
t
q2

 factor on the accuracy of 

Zernike coefficients nmnm SC ,  estimation. 

5. The jj  ,  values are assumed to have no mutual correlation for different measurement points. 

The results are illustrated in fig. 5, where the standard deviations of Zernike coefficients nmnm SC ,  are indicated. These 

standard deviations are computed over 100 realizations of the C vector. 
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Fig. 5 a, b, c  plots of relative standard deviation of Zernike coefficients nmC  versus standard deviation of angular eye 

micromotions (obtained under 27 Zernike polynomials and 110 measurement points); d  diagram of relative standard 
deviation of the same coefficients versus the number of Zernike polynomials and the number of measurement points 

(F16P33 means 16 reconstruction polynomials and 33 measurement points) 

 

As it is may be seen from fig. 5, the standard deviation SC ,  of Zernike coefficients estimation is directly proportional to 

  in range  =0…20. For this reason, numerical results of SC ,  are indicated in table 1 only for  = 10. 



The diagram d in fig. 5 shows that SC ,  depends on the number q of pupil measurement points and it decreases when q 

increases. 

 

Table1 Results of computer modeling, for  = 10  

Coef. Given Zernike coefficients, normalized to 3-mm pupil radius, 10-3  

C20 0.75 1.5 0 0 0.75 0.75 1.5 1.5 0 0 0 0 

C22 0 0 0.75 1.5 0.75 1.5 0.75 1.5 0 0 0 0 

C40 0 0 0 0 0 0 0 0 0.75 1.5 0 0 

C60 0 0 0 0 0 0 0 0 0 0 0.375 0.75 

Coef. Standard deviation of estimated Zernike coefficients, normalized to 3-mm pupil radius, 10-6 

C20 1.88 3.51 1.10 2.19 2.58 3.26 3.72 5.16 9.73 19.5 6.97 13.9 

C22 3.78 7.05 1.98 3.95 3.96 5.17 7.23 7.91 8.82 17.6 8.65 17.3 

C31 3.13 5.18 1.57 3.13 3.39 3.60 5.83 6.78 12.4 24.7 9.93 19.9 

C33 3.12 7.17 1.59 3.18 3.76 3.52 7.17 7.52 8.23 16.5 7.61 15.2 

C40 1.50 3.39 0.83 1.66 1.82 2.27 3.42 3.65 5.61 11.2 5.32 10.6 

C42 2.24 3.22 1.18 2.35 2.58 3.41 3.57 5.16 10.3 20.6 8.58 17.2 

C44 2.56 5.19 1.28 2.57 3.02 3.85 5.48 6.04 8.52 17.0 8.59 17.2 

C51 1.30 2.22 0.69 1.37 1.55 2.12 2.61 3.10 7.73 15.5 14.3 28.6 

C53 1.05 2.51 0.51 1.02 1.40 1.68 2.61 2.79 9.89 19.8 21.0 42.0 

C55 1.74 3.05 0.78 1.57 1.73 2.21 3.17 3.46 13.1 26.2 26.5 53.1 

C60 0.72 1.73 0.37 0.75 0.90 1.07 1.73 1.80 4.98 9.97 6.93 13.9 

C62 1.02 1.89 0.56 1.12 1.19 1.60 2.07 2.37 6.73 13.5 10.7 21.4 

C64 1.11 2.19 0.48 0.96 1.28 1.59 2.33 2.55 9.39 18.8 19.5 38.9 

C66 1.38 2.43 0.73 1.47 1.53 2.06 2.66 3.05 9.84 19.7 20.4 40.9 

S11 3.92 10.9 2.70 5.40 3.28 2.57 8.57 6.57 10.8 21.5 8.38 16.8 

S22 3.52 7.35 1.67 3.34 3.00 3.91 7.50 8.00 8.68 17.4 8.06 16.1 

S31 2.53 5.91 1.40 2.80 2.55 2.87 5.34 5.10 12.7 25.5 9.54 19.1 

S33 3.09 5.64 1.30 2.59 3.06 3.75 5.74 6.12 8.60 17.2 8.08 16.2 

S42 2.26 3.41 1.08 2.15 2.46 3.09 3.55 3.92 10.4 20.9 8.83 17.7 

S44 3.03 5.50 1.24 2.47 3.06 3.76 5.68 6.11 8.20 16.4 7.46 14.9 

S51 1.06 2.52 0.66 1.33 1.13 1.36 2.30 2.25 8.17 16.3 13.3 26.5 

S53 1.01 2.60 0.52 1.03 1.43 1.71 2.68 2.86 11.7 23.4 24.7 49.3 

S55 1.40 3.21 0.87 1.75 1.81 2.34 3.30 3.61 13.2 26.4 26.9 53.8 

S62 1.03 2.18 0.49 0.99 1.24 1.55 2.29 2.49 8.28 16.6 12.7 25.4 

S64 1.12 1.96 0.46 0.92 1.10 1.37 2.03 2.20 7.76 15.5 16.0 32.0 

S66 1.25 2.39 0.63 1.27 1.39 1.80 2.52 2.79 10.1 20.2 21.1 42.2 

 

Results, presented in table 1, indicate that: 

1. If the eye has just one type of aberration, for example, solely ametropia (defocusing) or primary astigmatism, then eye 

micromotions results in appearing non-zero values nmnm SC ,  of all other types and orders of aberrations, absent in the 

eye. The contribution of each present aberration to SC ,  of absent aberration is independent and directly proportional 

to nmnm SC ,  of present aberrations. 

2. The ratio between SC ,  of absent aberrations and nmnm SC ,  of present aberrations is unequal. For example, this ratio 

for 20C  is two times greater than for 22C . This confirms the bigger influence of present ametropia on values SC ,  of 

absent aberrations in comparison with present astigmatism of the same value. 



3. When  = 10, the SC ,  value of all aberrations, indicated in table 1, does not exceed 7.2% of the present aberration 

value (this cases are marked by a gray background). 

4. When solely defocusing is present, the biggest increase of SC ,  of absent aberrations is observed for aberrations like 

primary astigmatism (the coefficients C22, S22) and primary coma (the coefficients C31 ,  S31). 

5. The biggest increase of SC , of absent aberrations is observed when spherical aberration of the 3rd and 5th orders is 

present (see four last columns in table 1). Obviously, it may be explained by the greater values of derivative of this 

aberration with respect to spatial coordinate . 

 

5. CONCLUSIONS 

1. When ametropia is not compensated, then due to eye micromotions the retina image at the photodetector’s light-sensitive 

surface moves over this surface. The range of such movements is proportional to the longitudinal aberration of the beam 
as well as to the eye rotation angle. The eye rotation leads to essential measurement errors of eye transversal aberrations. 

Elimination of these errors may be achieved by hardware compensation of ametropia.  

2. Eye micromotions like jumps, which are not correlated for different measurement points and are of units or tens of 

angular minutes, may have an essential influence on Zernike coefficients estimation errors. Therefore, the ametropia and 
astigmatism parameters and the wave aberration function are affected too.  

3. The greater are values of present aberrations, the greater is the effect of the factor, indicated in item #2. This concerns 

especially to those aberrations, which vary rapidly when changing pupil coordinates (field aberrations and high-order 

aberrations). 

4. To diminish the influence of the factors, indicated in items #2 and #3, it is necessary to reduce the   values. It can be 

achieved by shortening the time interval of transverse aberration measurement session. 

5. The presented method has a universal character. It can be used when investigating the estimation errors of sight 

imperfection parameters at design of not only single-beam refractometers, but also other spatially resolved 

refractometers. 
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